timebasedcv.sklearn
¶
timebasedcv.sklearn.TimeBasedCVSplitter
¶
Bases: _BaseKFold
The TimeBasedCVSplitter
is a scikit-learn compatible CV Splitter that generates splits based on time values.
The number of sample in each split is independent of the number of splits but based purely on the timestamp of the sample.
In order to achieve such behaviour we include the arguments of
TimeBasedSplit.split()
method (namely time_series
, start_dt
and
end_dt
) in the constructor (a.k.a. __init__
method) and store the for future use in its split
and
get_n_splits
methods.
In this way we can restrict the arguments of split
and get_n_splits
to the arrays to split (i.e. X
, y
and
groups
), which are the only arguments required by scikit-learn CV Splitters.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
frequency |
FrequencyUnit
|
The frequency (or time unit) of the time series. Must be one of "days", "seconds", "microseconds",
"milliseconds", "minutes", "hours", "weeks". These are the only valid values for the |
required |
train_size |
int
|
Defines the minimum number of time units required to be in the train set. |
required |
forecast_horizon |
int
|
Specifies the number of time units to forecast. |
required |
time_series |
Union[SeriesLike[date], SeriesLike[datetime], SeriesLike[Timestamp]]
|
The time series used to create boolean mask for splits. It is not required to be sorted, but it must support:
|
required |
gap |
int
|
Sets the number of time units to skip between the end of the train set and the start of the forecast set. |
0
|
stride |
Union[int, None]
|
How many time unit to move forward after each split. If |
None
|
window |
WindowType
|
The type of window to use, either "rolling" or "expanding". |
'rolling'
|
mode |
ModeType
|
Determines in which orders the splits are generated, either "forward" (start to end) or "backward" (end to start). |
'forward'
|
start_dt |
NullableDatetime
|
The start of the time period. If provided, it is used in place of the |
None
|
end_dt |
NullableDatetime
|
The end of the time period. If provided,it is used in place of the |
None
|
Raises:
Type | Description |
---|---|
ValueError
|
|
TypeError
|
If |
Examples:
import pandas as pd
import numpy as np
from sklearn.linear_model import Ridge
from sklearn.model_selection import RandomizedSearchCV
from timebasedcv.sklearn import TimeBasedCVSplitter
start_dt = pd.Timestamp(2023, 1, 1)
end_dt = pd.Timestamp(2023, 1, 31)
time_series = pd.Series(pd.date_range(start_dt, end_dt, freq="D"))
size = len(time_series)
df = pd.DataFrame(data=np.random.randn(size, 2), columns=["a", "b"])
X, y = df[["a", "b"]], df[["a", "b"]].sum(axis=1)
cv = TimeBasedCVSplitter(
frequency="days",
train_size=7,
forecast_horizon=11,
gap=0,
stride=1,
window="rolling",
time_series=time_series,
start_dt=start_dt,
end_dt=end_dt,
)
param_grid = {
"alpha": np.linspace(0.1, 2, 10),
"fit_intercept": [True, False],
"positive": [True, False],
}
random_search_cv = RandomizedSearchCV(
estimator=Ridge(),
param_distributions=param_grid,
cv=cv,
n_jobs=-1,
).fit(X, y)
Source code in timebasedcv/sklearn.py
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
|
split(X=None, y=None, groups=None)
¶
Generates integer indices corresponding to train and test sets.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
Union[NDArray, None]
|
Optional input features array. |
None
|
y |
Union[NDArray, None]
|
Optional target variable array. |
None
|
groups |
Union[NDArray, None]
|
Optional array containing group labels for the samples. |
None
|
Returns:
Type | Description |
---|---|
Generator[Tuple[NDArray[int_], NDArray[int_]], None, None]
|
A generator that yields tuples of train and test indices. |
Raises:
Type | Description |
---|---|
ValueError
|
If the input arrays have incompatible lengths with reference |
Source code in timebasedcv/sklearn.py
get_n_splits(X=None, y=None, groups=None)
¶
Returns the number of splits that can be generated from the instance.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
Union[NDArray, None]
|
Unused, exists for compatibility, checked if not None. |
None
|
y |
Union[NDArray, None]
|
Unused, exists for compatibility, checked if not None. |
None
|
groups |
Union[NDArray, None]
|
Unused, exists for compatibility, checked if not None. |
None
|
Returns:
Type | Description |
---|---|
int
|
The number of splits that can be generated from |