timebasedcv.core
¶
timebasedcv.core._CoreTimeBasedSplit
¶
Base class for time based splits. This class is not meant to be used directly.
_CoreTimeBasedSplit
implements all the logics to set up a time based splits class.
In particular it implements _splits_from_period
which is used to generate splits from a given time period (from
start to end dates) from the given arguments of the class (frequency, train_size, forecast_horizon, gap, stride and
window type).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
frequency |
FrequencyUnit
|
The frequency (or time unit) of the time series. Must be one of "days", "seconds", "microseconds",
"milliseconds", "minutes", "hours", "weeks". These are the only valid values for the |
required |
train_size |
int
|
Defines the minimum number of time units required to be in the train set. |
required |
forecast_horizon |
int
|
Specifies the number of time units to forecast. |
required |
gap |
int
|
Sets the number of time units to skip between the end of the train set and the start of the forecast set. |
0
|
stride |
Union[int, None]
|
How many time unit to move forward after each split. If |
None
|
window |
WindowType
|
The type of window to use, either "rolling" or "expanding". |
'rolling'
|
mode |
ModeType
|
Determines in which orders the splits are generated, either "forward" (start to end) or "backward" (end to start). |
'forward'
|
Raises:
Type | Description |
---|---|
ValueError
|
|
TypeError
|
If |
Although _CoreTimeBasedSplit
is not meant to be used directly, it can be used as a template to create new time
based splits classes.
Examples:
from timebasedcv.core import _CoreTimeBasedSplit
class MyTimeBasedSplit(_CoreTimeBasedSplit):
...
def split(self, X, timeseries):
'''Implement the split method to return a generator'''
for split in self._splits_from_period(timeseries.min(), timeseries.max()):
# Do something with the split to compute the train and forecast sets
...
yield X_train, y_test
Source code in timebasedcv/core.py
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
|
forecast_delta: timedelta
property
¶
Returns the timedelta
object corresponding to the forecast_horizon
.
gap_delta: timedelta
property
¶
Returns the timedelta
object corresponding to the gap
and frequency
.
stride_delta: timedelta
property
¶
Returns the timedelta
object corresponding to stride
.
train_delta: timedelta
property
¶
Returns the timedelta
object corresponding to the train_size
.
__repr__()
¶
Custom repr method.
Source code in timebasedcv/core.py
n_splits_of(*, time_series=None, start_dt=None, end_dt=None)
¶
Returns the number of splits that can be generated from time_series
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
time_series |
Union[SeriesLike[DateTimeLike], None]
|
A time series data. If provided it should support |
None
|
start_dt |
NullableDatetime
|
The start date and time of the time series. If not provided, it will be inferred from
|
None
|
end_dt |
NullableDatetime
|
The end date and time of the time series. If not provided, it will be inferred from
|
None
|
Returns:
Type | Description |
---|---|
int
|
The number of splits that can be generated from the given time series. |
Raises:
Type | Description |
---|---|
ValueError
|
|